
Perl & NoSQL
Focus on MongoDB

Jean-Marie Gouarné
http://jean.marie.gouarne.online.fr

jmgdoc@cpan.org

22

AGENDA

 A NoIntroduction to NoSQL
 The “document store” data model
 MongoDB at a glance
 MongoDB Perl API basics
 A few more advanced queries
 Server side code execution

Introduction

44

 For a real NoSQL focus, wait for
https://fosdem.org/2013/schedule/track/nosql

 NoSQL is a no-concept ; it's essentially an advocacy group ;
it's certainly not a technology

 The NoSQL catalogue and taxonomy are out of my present
scope ; today I focus on the “document stores” category,
illustrated by MongoDB, and its Perl connection

 NoSQL is cool and mature ; unfortunately it's essentially a
NoPerl world, for non-technical reasons

55

 Non tabular logical schemas
 No standard data manipulation language (for the time being)
 Flexible data structures
 “Eventual consistency” (no ACID mechanism)
 Unlimited scalability (hopefully)
 Native replication/distribution mechanisms
 Open source (with commercial support)
 ...

A few common characteristics

Not intended to replace SQL (...for now)

66

 data may be persistently stored without a previously defined,
tabular schema ; heterogeneous logical structures are allowed
in the same data set ; NoSQL should mean NoDDL

 a logical data record may be much more sophisticated than a
“table row”, but multi-objects joins, when needed, are
supported by the application, not by the data engine

 the “commit/rollback” transactional logic, if needed, is
supported by the application, not by the data engine

 the data engine is distributed by design, so it may scale up by
adding commodity hardware

Essential messages

77

NoSQL Perl APIs ?

 Some NoSQL engines work as “services” behind a REST
API, i.e. language-neutral

 Some NoSQL engines offer “connected” APIs ; they are
provided with a low level client library, and sometimes with
high level drivers for one or more dynamic P* languages (but
P* is almost never Perl)

 Javascript is quickly gaining ground as a server-side
development tool ; it's a strong challenger for P* languages

 MongoDB is currently an exception : it offers a connected
API that comes with official drivers for 13 languages,
including a CPAN-packaged, conveniently documented Perl
module

The document store
data model

0001

0002

0003

0004

99

Attempted disambiguation

 The “document database” concept is far from new and may
apply to very heterogeneous products/solutions

 So-called “unstructured” document management, sharing and
replication platforms such as, say, IBM's Lotus Notes, EMC's
Documentum or Microsoft's Sharepoint represent a well
known kind of document databases

 Popular CMSs use SQL engines to store the documents
 XML DBMSs are real NoSQL document DBMSs (and in

most cases notorious commercial failures)
 In the recently emerged NoSQL ecosystem (~2009), the

“document store” concept is more restrictive

10

The “document store” in our scope

 The document is basically a consistent set of key-value
pairs

 Each key is uniquely named in the document
 The value in each pair maybe either a scalar content or a

sub-document (recursively)
 Each document belongs to a logical document set

(collection, database, ...)
 Each document is uniquely identified in the document

container
 Each document comes with its own structural metadata

(allowing various structures in the same document set)
and doesn't depend on any external reference (no foreign
key, no referential integrity, no XML-like schema)

11

Document external représentation

{
"First name" : "Jean-Marie",
"Last name" : "Gouarné",
"email" : [

"jmgdoc@cpan.org",
"jmg@genicorp.fr"
],

"Address" : {
"Country" : "FR",
"Street" : "5 rue de la Forge",
"City" : "Paris",
"Postal area" : "75017"

 }
}

Goodbye XML, welcome to JSON...

12

Good news for Perl

{
"First name" => "Jean-Marie",
"Last name" => "Gouarné",
"email" => [

"jmgdoc@cpan.org",
"jmg@genicorp.fr"
],

"Address" => {
"Country" => "FR",
"Street" => "5 rue de la Forge",
"City" => "Paris",
"Postal area" => "75017"

 }
}

A JSON document is (almost) a Perl hashref

$doc =

14

 Not the best NoSQL server for any purpose, but...
 One minute install for a single server with default config
 Powerful, resilient and reasonably easy to deal with in big

data, read only environments
 Handle with care (or look for other products) in heavy

write concurrency contexts (note : stay tuned,
improvements are coming)

 Powerful and easy to use interactive javascript client shell
 Server side javascript engine
 Cool APIs for Perl and various other languages
 Probably the most friendly NoSQL DBMS for a Perl/SQL

developer

15

 Works in connected mode, so...
 A client application (ex: Perl) can get access to a

MongoDB instance through one or more connections
 From an existing connection, the application may access

one or more databases, i.e. logical data areas (not schemas)
 From a given database, the application can handle one or

more collections
 A collection (as an API object) provides the most usual

methods to create, update, delete or retrieve documents

The API

The Perl API basics

17

Before coding

 Secure a local or remote MongoDB access (check it using the
mongo shell)

 Install MongoDB >= 0.503 from CPAN (beware : lot of
dependencies)

 Use mongoimport to load data from flat files (no coding if the
stuff is available in CSV or JSON format)

 Use the mongo shell to quickly explore the data
 Have a look at MongoDB::Tutorial
 Be prepared to frequent visits at http://docs.mongodb.org (and

remember that the understanding of advanced code examples
requires some Javascript reading skills)

18

Getting started

use MongoDB;

establish a first connection
my $connection = MongoDB::MongoClient

->new('mongodb://localhost:27017');

instantiate a DB object
my $db = $connection->get_database('demo');

instantiate and use a collection
my $collection = $db->get_collection('hello');
my $id = $collection->insert(

{ author => "JMG", text => "Hello World !" }
);

19

Retrieving documents

 For data set retrieval, the find() method returns a cursor that
allows the application to iterate through the data set

 For single document retrieval, find_one() returns the (first)
matching document as a Perl hash ref

 find() and find_one() arguments are documents (i.e. hash refs)
the first one is the condition; it may filter on one or more fields;
regexs are supported

the second one is the list of fields required in the result set

 Main limit : no direct join with find/find_one; multi-collection
queries imply procedures

20

Retrieving documents

$dataset = $collection->find(
{ field1 => $value1, field2 => qr/xxx/i },
{ field1 => 1, field4 => 1 }

)->sort({ field1 => -1 });

while ($doc = $dataset->next) {
say "$doc->{field1} $doc->{field4}";

}

Selecting on "field1" by value AND "field2" by regex,
returning a dataset with only "field1" and "field4",
sorted by "field1" descending. The loop iterates through the
dataset for local processing.

21

“$” operators

$states = ['NY', 'TX', 'IL', 'CA'];
$cond = {

pop => {'$gt' => 100000},
state => {'$in' => $states}

};
$fields = {city => 1, state => 1, pop => 1};
$sort = {pop => -1, state => 1, city => 1, zip => 1};

$dataset = $cities->find($condition, $fields)->sort($sort);

Filtering operators, if any, must be passed as special keys
among the data.
The query below selects the places (city name + zip code)
that belong to a restricted list of US states and whose
population is greater than 100,000 (see the “zips” example
in the MongoDB Manual for the data structure)

22

Updating documents

Updating every document that matches the same conditions
as in the previous example. The “multiple” option means
“everyone” (and not only the first match). The code below
adds a “comment” field to every document matching the
same condition as in the previous query

$states = ['NY', 'TX', 'IL', 'CA'];
$condition = {

pop => {'$gt' => 100000},
state => {'$in' => $states}

};
$action = {'$set' => {comment => "Large post office"};

$cities->update($condition, $action, {multiple => 1});

More advanced examples
Aggregation, Geolocation

24

Aggregation

 Sophisticated aggregation framework for reporting and
business intelligence needs

 Similar functionality to SQL “group by”
 Main method : aggregate() ; operates in pipe-line mode
 Powerful functionality for a NoSQL engine, but abashing

grammar ; requires training...

25

Aggregation

my $dataset = $c->aggregate([
 {'$group' =>
 {'_id' => '$state', 'totalPop' =>
 {'$sum' => '$pop' }
 }
 },
 {'$match' =>
 {'totalPop' => { '$gte' => 10000000 }}
 },
 {'$sort' => { totalPop => -1 }}
]);

SELECT state, SUM(pop) AS pop
FROM zips
GROUP BY state
HAVING pop > (10000000)
ORDER BY pop DESC

26

Geospatial queries

 The MongoDB engine may recognize some particular fields as
2D coordinates

 These particular fields may be used in find() queries in order
to select documents according to their geographical position

 They allow filtering on
distance from a given point ;

location within a given polygon (array of points)

 They allow ranking according the geographical distance from
a given location

27

Geospatial queries

my $places = $collection->find(
{position => {'$near' => [$x, $y]}}

)
 ->limit(20);

Selecting the 20 nearest locations from a given point
according to the “position” field (assuming document
structures similar to the example above)

{
nom_lieu : "Bruxelles",
code_postal : "1000",
nom_region : "Bruxelles-Capitale",
position : [50.8466, 4.3528],
…

}

Server-side code execution

29

A Perl/Javascript affair

 A Perl program can provide Javascript functions to be
executed in the server space

 The client program just submit the code and gets the result;
there is no intermediate network traffic between the client and
the server

 This feature may be used either to call functions persistently
stored in the database or to execute application-provided
functions

 The JS is submitted through the eval() database method, and is
executed by the server in the context of the calling database

30

A Perl/Javascript affair

$js = 'function(arg1, arg2) { ... }';
$response = $database->eval(

$js, \@arguments
);

if ($response->{ok}) {
process($response->{result};

} else {
say "Server side execution failure";

}

Submitting a Perl-generated Javascript function and
processing the result

31

Recommended readings
 CPAN (http://search.cpan.org/dist/MongoDB)
 The little MongoDB Book – Karl Seguin

(http://openmymind.net)

 MongoDB Doc Project (http://docs.mongodb.org)

 MongoDB, the definitive guide – K. Chodorow M. Dirolf,
O'Reilly

 MongoDB in action – Kyle Banker, Manning
 The Definitive Guide to MongoDB: The NoSQL Database

for Cloud and Desktop Computing – E. Plugge, T. Hawkins
 P. Membrey, APRESS

32

Questions ?

